Chapter 5

Circuit Theorems
Figure 5.1-1

Design problem involving a strain gauge bridge.

\[v_l = v_i \times \frac{R + \Delta R}{2R} \]

\[v_R = v_i \times \frac{R - \Delta R}{2R} \]

\[v_0 = v_l - v_r \]

\[= v_i \times \left(\frac{R + \Delta R}{2R} - \frac{R - \Delta R}{2R} \right) \]

\[= v_i \times \frac{\Delta R}{R} \]
new concepts from ch. 5

- electric power for cities
- source transformations
- superposition principle
- Thévenin’s theorem
- Norton’s theorem
- maximum power transfer
electric power to the cities

generation \rightarrow transmission \rightarrow distribution

the network of electric power
Basic Components of Electric Power:

How electricity gets to you

When electricity leaves a power plant (1), its voltage is increased at a “step-up” substation (2). Next, the energy travels along a transmission line to the area where the power is needed (3). Once there, the voltage is decreased, or “stepped-down,” at another substation (4), and a distribution power line (5) carries the electricity until it reaches a home or business (6).

– EEI, Getting Electricity Where It’s Needed, May 2000
Electric Power Delivery Efficiency

Source: PJM Website
Section 5.3

source transformations

- procedure for transforming one source into another while retaining the terminal characteristics of the original source
- producing an equivalent circuit
- identical effect at terminals, not \textit{within} the circuits themselves
why transform?

- it may be easier to solve a circuit when the sources are all the same type (i.e., current or voltage)
Figure 5.3-1

Two equivalent circuits.
let’s transform this circuit...
to this circuit...
Figure 5.3-2

(a) Voltage source with an external resistor \(R \). (b) Current source with an external resistance \(R \).
for any applied load R

- both circuits must have the same characteristics
- let’s apply the extreme values of R
 - $R = 0$
 - $R = \infty$
When \(R = 0 \)

- we essentially have a short circuit
- therefore the short circuit current of each circuit must be equal

- for first circuit:
 - \(i = \frac{v_s}{R_s} \)

- for second circuit: \(i = i_s \), so...
 - \(i_s = \frac{v_s}{R_s} \)
When \(R = \infty \)

- we essentially have an open circuit
- therefore the open circuit voltage of each circuit must be equal
- for second circuit:
 - \(v = i_s R_p \)
- from the first circuit: \(v = v_s \), so...
 - \(v_s = i_s R_p \)
combining what we know...

- when $R = 0$
 - $i_s = v_s/R_s$

- when $R = \infty$
 - $v_s = i_s R_p$

- so from $R = 0$ to ∞

 $v_s = (v_s/R_s) R_p$

 Therefore $R_s = R_p$
dual circuits

circuits are said to be duals when the characterizing equations of one network can be obtained by simple interchange of \(v \) and \(i \) and \(G \) and \(R \)

\[R_p = \frac{1}{G_p} \]

\[i_s = v_s G_p \quad \text{and} \quad v_s = i_s R_s \]
examples: this circuit is equivalent to...

\[R_s = 12 \, \Omega \]

36V

O → a → Rs → b → O
this one.....

\[R_p = R_s = 12 \, \Omega \]

\[v_s = i_s R_s \text{ or } i_s = \frac{v_s}{R_p} \]

\[= \frac{36}{12} = 3 \, \text{A} \]

\[i_s = ? \, \text{A} \]

\[3 \, \text{A} \]

\[R_p = ? \, \Omega \]

\[12 \, \Omega \]
examples: make these circuits equivalent...

\[R_s = 10 \, \Omega \]
how…..

$R_p = R_s = 10 \, \Omega$

$So \ v_s = 12V = i_s \cdot R_s$ or $i_s = \frac{v_s}{R_p}$

$= \frac{12}{10} = 1.2V$
examples: make these circuits equivalent…

```
12V
```

```
R_s
```

```
O   a
```

```
O   b
```

22
$R_p = R_s = 10 \, \Omega$

how.....

So $v_s = -12V = i_s \, R_s$ or $i_s = v_s / R_p =\frac{-12}{10} = -1.2A$
examples: make these circuits equivalent...

$\begin{align*}
 i_s &= 3 \text{ A} \\
 R_p &= 8 \Omega
\end{align*}$
how.....

\[R_s = ? \Omega \]

\[R_p = R_s = 8 \, \Omega \]

\[V_s = ? V \]

So \(v_s = i_s R_s \) or \(-24 \, V\)
Figure 5.3-3
Method of source transformations.

(a) Method

Method

Set $i_s = \frac{v_s}{R_s}$
Set $R_p = R_s$

(b) Method

Set $v_s = i_s R_p$
Set $R_s = R_p$
Figure 5.3-5

The circuit of Example 5.3-2.
Resistances in ohms.

\[i_s = \frac{V_s}{R_s} = \frac{3}{30} = 0.1A \]

\[R_p = R_s \]
Figure 5.3-6
Source transformation steps for Example 5.3-2. All resistances in ohms.

\[v_s = i_s R_p = 0.1 \times 12 = 1.2 \text{V} \]

\[\begin{align*}
R_s &= R_p
\end{align*} \]
Section 5.4

superposition principle (SP)

In a single element:

if the application of

\(i_1 \) yields \(v_1 \) and \(i_2 \) yields \(v_2 \) then:

\(i_1 + i_2 \) will yield \(v_1 + v_2 \)

the total effect of several causes acting simultaneously is equal to the sum of the effects of the individual causes acting one at a time
SP can help…

- how to apply SP to simplify analysis
- disable *all but one* source
- find *partial* response to that source
- disable all but the next source
- find *partial* response to that source
- iterate
- sum all the partial effects to get total
How to… continued

- set current sources to 0 (open circuits)
- solve for partial effect
- set voltage sources to 0 (short circuits)
- solve for partial effect
- sum effects
examples

\[i_1 = \frac{6}{3+6} = \frac{6}{9} \]

\[i_2 = \frac{2 \times 3}{3+6} = \frac{6}{9} \]

\[i_m = i_1 + i_2 = \frac{6}{9} + \frac{6}{9} = \frac{12}{9} \]
examples

\[
i = i_1 + i_2 = 3 - \frac{7}{4} = \frac{5}{4} \text{ A}
\]

\text{KVL:}
\[-24 + 3i_1 + 2i_1 + 3i_1 = 0 \Rightarrow i_1 = 3 \text{ A}\]

\text{KCL:}
\[-i_2 - 7 + \frac{-3i_2 - 2i_2}{2} = 0 \Rightarrow i_2 = -\frac{7}{4}\]
Section 5.5

Thévenin’s theorem

- **GOAL:** reduce some complex part of a circuit to an equivalent source and a single element (for analysis)
- **THEOREM:** for any circuit of resistance elements and energy sources with a identified terminal pair, the circuit is replaceable by a series combination of \(v_t \) and \(R_t \)
Thévenin method

- If circuit contains resistors and ind. sources
 - Connect open circuit between a and b. Find v_{oc}
 - Deactivate source(s), calc. R_t by circuit reduction

- If circuit has resistors and ind. & dep. sources
 - Connect open circuit between a and b. Find v_{oc}
 - Connect short circuit across a and b. Find i_{sc}
 - Connect 1-A current source from b to a. Find v_{ab}
 - NOTE: $R_t = v_{ab} / 1$ or $R_t = v_{oc} / i_{sc}$

- If circuit has resistors and only dep. sources
 - Note that $v_{oc} = 0$
 - Connect 1-A current source from b to a. Find v_{ab}
 - NOTE: $R_t = v_{ab} / 1$
Example: R & indep. source

\[v_{oc} = 50 \times \frac{20}{20 + 5} = 40V \]

\[R_t = 4 + 5 \parallel 20 = 8\Omega \]
Example: V & I source

\[
\frac{v_{oc}}{10} - \frac{-10}{10} + \frac{v_{oc}}{40} + 2 = 0
\]

\[v_{oc} = -8V\]

\[R_t = 4 + \frac{10}{40} = 12 \Omega\]
Example: indep. & dep. source

\[
-20 + 6i_1 - 2i + 6(i_1 - i_2) = 0 \\
6(i_2 - i_1) + 10 \times i_2 = 0 \\
i = i_1 - i_2 \\
\Rightarrow i_{sc} = i_2 = \frac{120}{136}
\]

\[
KVL: -20 + 6i - 2i + 6i = 0 \\
i = 2A \Rightarrow v_{oc} = 6i = 12V
\]

\[
R_t = \frac{v_{oc}}{i_{sc}} = 12 / \left(\frac{120}{136}\right) = 13.6\Omega
\]
Example: dep. source

\[V_{oc} = 0 \]
\[i_{sc} = 0 \Rightarrow R_t = \frac{V_{oc}}{i_{sc}} = \frac{0}{0} \]

\[KCL: \frac{V_{ab} - 2i}{5} + \frac{V_{ab}}{10} - 1 = 0 \]
\[v_{ab} = 10i \Rightarrow v_{ab} = \frac{50}{13} V \]

\[R_t = \frac{V_{ab}}{1} \]
\[R_t = \frac{V_{ab}}{1} = \frac{50}{13} \Omega \]

\[R_t = \frac{50}{13} \Omega \]
Section 5.6

Norton’s theorem

- **GOAL:** reduce some complex part of a circuit to an equivalent source and a single element (for analysis)

- **THEOREM:** for any circuit of resistive elements and energy sources with a terminal pair, the circuit is replaceable by a parallel combination of i_{sc} and R_n (this is a source transformation of the Thevenin)
Norton equivalent circuit

\[R_n = R_t \]
Norton method

—if circuit contains resistors and ind. sources
- Connect short circuit between a and b. Find i_{sc}
- Deactivate ind. source(s), calc. $R_n = R_t$ by circuit reduction

—if circuit has resistors and ind. & dep. sources
- Connect short circuit across a and b. Find i_{sc}
- Connect open circuit between a and b. Find $v_{oc} = v_{ab}$
- Connect 1-A current source from b to a. Find v_{ab}
 - NOTE: $R_n = R_t = \frac{v_{ab}}{1}$ or $R_n = R_t = \frac{v_{oc}}{i_{sc}}$

—if circuit has resistors and only dep. sources
- Note that $i_{sc} = 0$
- Connect 1-A current source from b to a. Find v_{ab}
 - NOTE: $R_n = R_t = \frac{v_{ab}}{1}$
Example: R & indep. source

\[R_n = (8 + 4) \parallel 6 = 4k\Omega \]

\[i_{sc} = \frac{15}{8 + 4} = 1.25mA \]
Example: v & c source

\[R_n = 4 // 12 = 3\Omega \]

\[\text{KCL}: -\frac{24}{4} - 3 + i_{sc} = 0 \]

\(\Rightarrow i_{sc} = 9A \)
Example: dep. & indep. source

\[-5 + 500i + v_{ab} = 0 \]
\[v_{ab} = -25(10i) \Rightarrow i = \frac{-v_{ab}}{250} \]
\[v_{ab} = -5V \]
\[R_t = \frac{v_{ab}}{i_{sc}} = \frac{-5}{-0.1} = 50\Omega \]

\[v_{ab} = 0 \Rightarrow i = \frac{5}{500} = 10mA \]
\[i_{sc} = -10i = -100mA \]
maximum power transfer

- what is it?
- often it is desired to gain maximum power transfer for an energy source to a load
 - examples include:
 - electric utility grid
 - signal transmission (FM radio receiver)
 - source \(\rightarrow \) load
maximum power transfer

how do we achieve it?

\[v_t \text{ or } v_{sc} \]
maximum power transfer

\[p = i^2 R_L \]

\[i = \frac{v_s}{R_L + R_t} \]

\[\therefore p = \left(\frac{v_s}{R_L + R_t}\right)^2 R_L \]

\[\therefore \frac{dp}{dR_L} = v_s^2 \frac{(R_t + R_L)^2 - 2(R_t + R_L)R_L}{(R_t + R_L)^4} = 0 \]

\[R_L = R_t \]
maximum power transfer theorem

So…

maximum power delivered by a source represented by its Thevenin equivalent circuit is attained when the load R_L is equal to the Thevenin resistance R_t
Figure 5.7-3
Power actually attained as R_L varies in relation to R_t.

$$P_{\text{max}} = \frac{v_s^2 R_L}{(2R_L)^2} = \frac{v_s^2}{4R_L}$$
efficiency of power transfer

how do we calculate it for a circuit?

\[\eta = \frac{p_{out}}{p_{in}} \]

\[p_{in} = v_s i = v_s \left(\frac{v_s}{R_L + R_t} \right) = \frac{v_s^2}{2R_L} \]

\[p_{out} = p_{max} \left(\frac{v_s}{R_L + R_L} \right)^2 = \frac{v_s^2}{4R_L} \]

\[\therefore \eta = \frac{p_{out}}{p_{in}} = 50\% \text{ max} \]
Norton equivalent circuits

\[p = i^2 R \] in a Norton equivalent circuit we find that it, too, has a maximum when the load \(R_L \) is equal to the Norton resistance \(R_n = R_t \).
Example

\[KVL: -6 + 10i - 2v_{ab} = 0 \]
\[10i - 8i = 6 \Rightarrow i = 3A \]
\[v_{oc} = 4i = 12V \]

\[R_L = R_t = 12\Omega \]

\[P_{max} = \frac{v_{oc}^2}{4R_L} \]
\[= \frac{12^2}{4 \times 12} = 3W \]